Base	&	Ksp	Test
------	---	-----	------

2019 v1

	~	
Name:	answ	ers.

ant adds some hydrochloric acid, HCI(aq), to water and finds the resulting solution to e a pH of 3.50. What is the hydroxide ion concentration [OH (aq)] of this solution? 14-3.5 = 10.5

C) 10.5 mol/L

 $3.16 \times 10^{-4} \text{ mol/L}$

Acid-base reaction, HNO_{2(aq)} + HCO⁻¹_{3(aq)} 2

 $NO^{-1}_{2(aq)} + H_2CO_{3(aq)}$

Given that the equilibrium favors the formation of products, which of the following statements is true?

- A) HCO₃-1 is a stronger acid than H₂CO₃.
- B) HCO₃-1 is a stronger acid than HNO₂.
- C) H₂CO₃ is a stronger acid than HNO₂. MNO₂ is a stronger acid than H₂CO₃.

3

Acid	Ka
Carbonic acid, H ₂ CO ₃	4.4 × 10 ⁻⁷
Hydroselenic acid, H₂Se	1.7 × 10 ⁻⁴
Acetic acid, CH ₃ COOH	1.8 × 10 ⁻⁵
Nitrous acid, HNO ₂	5.1 × 10 ⁻⁴

Which is the strongest acid?

A) H₂CO₃

B) H₂Se

C) CH₃COOH

MHNO₂

Which of the following are TRUE characteristics of a strong acidic solution?

- 1. The Ka value is very large. <
- 2. It does not conduct electricity. X
- 3. $[H^{+}] > [OH^{-}].$
- 4. pH > 7.
- The K_a value is very small. 🗶 5.

B) 1 & 4

C) 2 & 5

D) 3, 4 & 5

5 The ionization constant for water at 25°C is 1.0×10⁻¹⁴ & at 100°C it is 5.13 ×10⁻¹³. What is the pH of water at 100°C?

A) 1.00 ×10⁻⁷

B) 7.16 ×10⁻⁷ 5.13 x 10 -13 = [H+][OH-]

D) 7.00

4. 5.

V5.13 x 1013 = x 2 7.16x10-7 = x=[H+]

- log (7.16x10⁻⁷)

/10

2019 v2

answers

A student adds some hydrochloric acid, HCI(aq), to water and finds the resulting solution to 1 have a pH of 3.50. What is the hydroxide ion concentration [OH-(aq)] of this solution?

- A) $3.16 \times 10^{-4} \text{ mol/L}$
- B) $2.86 \times 10^{-15} \text{ mol/L}$

- 10.5 mol/L
- (D) 3.16 × 10⁻¹¹ mol/L

2 Acid-base reaction, HNO_{2(aq)} + HCO⁻¹_{3(aq)}

 $NO^{-1}_{2(aq)} + H_2CO_{3(aq)}$ \leftrightarrow

Given that the equilibrium favors the formation of products, which of the following statements is true?

- A) HCO₃-1 is a stronger acid than H₂CO₃.
- B) HCO₃-1 is a stronger acid than HNO₂.
- WHNO2 is a stronger acid than H2CO3.
- D) H₂CO₃ is a stronger acid than HNO₂.

3

Acid	Ka
Carbonic acid, H₂CO₃	4.4 × 10 ⁻⁷
Hydroselenic acid, H₂Se	1.7 × 10 ⁻⁴
Acetic acid, CH₃COOH	1.8 × 10 ⁻⁵
Nitrous acid, HNO ₂	5.1 × 10 ⁻⁴

Which is the strongest acid?

- A) H₂CO₃
- B) H₂Se
- C) CH₃COOH
- MHNO₂

Which of the following are TRUE characteristics of a strong acidic solution? 4 |

- 1. The Ka value is very large.
- 2. It does not conduct electricity.
- 3. $[H^{+}] > [OH].$
- 4. pH > 7.
- The Ka value is very small. 5.
 - **6** 1 & 3
- B) 1 & 4
- C) 2 & 5
- D) 3, 4 & 5

5 The ionization constant for water at 25°C is 1.0×10⁻¹⁴ & at 100°C it is 5.13 ×10⁻¹³. What is the pH of water at 100°C?

- C) 7.16 ×10⁻⁷
- D) 7.00

D 1. 2. D 3. A 4. B 5.

Α

Q

A) 1.00×10^{-7} (B) $K_{w} = (H^{+})(OH^{-})$ 5. $13 \times 10^{13} = \chi^{2}$ 7. $16 \times (0^{-7}) = \chi$

- Give the "Acid name" for the following compounds. (3)
 - A) hydrogen bromide (HBr) hydrobromic acid
 - B) hydrogen carbonate (H2CO3) carbonic acid
 - C) hydrogen sulphite (H2SO3) sulphumus acid.

Show all you work for the following problems. Show formulae & provide units. 4 pts each

25.56 g of NH₃ (a strong base) is dissolved into 2.00 L of water. The base ionizes completely as shown in the equation below: $NH_{3(g)} + H_2O_{(l)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$

Calculate the pH of this solution?

Calculate the pH of this solution?
$$POH = -log(OH)$$
 $|mol = 17.049 \times = 1.509mol NH_3 = 1.509mol OH = -log(O.750)$
 $|x| = 25.56$
 $|x| = 1.509mol NH_3 = 1.509mol OH = 0.125$

 $H_2CO_{3(aq)} \leftrightarrow H^+_{(aq)} + HCO_{3^-(aq)} K_a$ Carbonic acid, H₂CO₃, is a weak acid 8 5.00 x 10⁻⁴ moles of carbonic acid are placed into 500 mL of distilled water.

Calculate the pH of this solution?

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.500L} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.500L} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.500L} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.500L} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-3}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$[H_{2}(O_{3})] = \frac{5.00 \times 10^{-4}}{0.001} = 1.00 \times 10^{-4}M$$

$$\frac{\text{CH}_{2}(Q_{2})}{4.3\times10^{-7}} = \frac{(x)(x)}{(x)} = \frac{PH = 4.7}{PH = 4.7}$$

$$\frac{0.001 - x}{4.3\times10^{-7}} = \frac{x^{2}}{x^{2}}$$

4.3×10-7 ×2 -x4.3×10-10 = x 2 O. 001-x

The initial concentration of an acid (HX) is 2.70 M. Calculate the dissociation constant (Ka) for this acid if the pH is 1.3. Ka=[H+][x-]

$$PH = 1.3$$
 $EH + J = 10^{-1.3} = 0.05 = x$

$$= \frac{(0.05)^{2.70-0.05}}{2.70-0.05}$$

$$= \frac{0.0025}{2.65} = \frac{9.5 \times 10^{-4}}{(accept 9.4 \times 10^{-4})}$$

/15

$$Ba_{s}(Po_{4})_{2(s)} \rightarrow 3Ba^{2+} + 2Po_{4}^{-3}$$

$$Ea_{1} = 0.015 = 3x$$

$$Ea_{2+} = 0.015 = 3x$$

$$= (3x)^{3}(2x)^{2}$$

$$= (0.015)^{3}(0.010)^{2}$$

$$= 3.375 \times 10^{-10}$$

$$Ea_{1} = 0.015 = 3x$$

$$0.005 = x$$

$$[Po_{4}] = 2x = 0.010$$

$$= 3.4 \times 10^{-10}$$

$$\frac{M_{A}V_{A}}{N_{A}} = \frac{M_{B}V_{B}}{N_{B}}$$

$$\frac{M_{A}(235)}{3} = \frac{(1.40)(180)}{1}$$

$$\frac{M_{A}(235)}{3} = \frac{756}{235}$$

1.50 mol/
$$\times$$
 0.400 K = 0.600 mol H⁺

0.625 mol/ \times 0.800 L = 0.500 mol OH⁻
 $= -log 0.0 = -log 0.100 mol H+ left$

pH + pOH = 14

[H] 10 - PH

[OH]= 10-POH

pH = - log [H+]

poH = - log LOH-]

Kw = [H+] [OH]

Km = 1×10-14

Kw = Ka· Kb

MANA = MBUB NA NB

 $\chi = -b \pm \sqrt{b^2 - 4ac}$