MC

ans

/10

 $\frac{1}{2}$

<u>4</u>

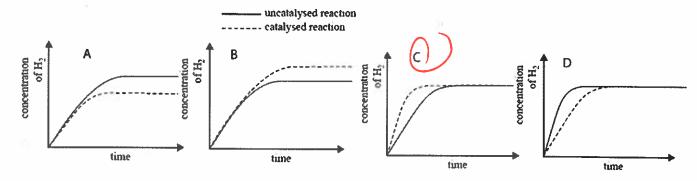
- 1. Which of the following statements best defines the dynamic nature of a chemical equilibrium?
 - A) The reactants transform completely into products. X
 - B) The macroscopic (visual) properties remain constant. V True but it may not be
 - C) The masses of the reactants and the products are equal.
 - D) The rates of the forward and reverse reactions are equal.

1) $N_{2(g)} + 3 H_{2(g)} \leftrightarrow 2 NH_{3(g)}$	$K_{eq} = 2.66 \times 10^{-3}$
2) 2 $H_{2(g)} + S_{2(g)} \leftrightarrow 2 H_2 S_{(g)}$	$K_{eq} = 9.38 \times 10^{-5}$
3) 2 $H_2O_{(g)} + 2 S_{(s)} \leftrightarrow 2 H_2S_{(g)} + O_{2(g)}$	$K_{eq} = 5.31 \times 10^{-10}$
4) $H_{2(g)} + I_{2(g)} \leftrightarrow 2 HI_{(g)}$	$K_{eq} = 54.4$

- A) The formation of $NH_{3(g)}$ is favored in system 1.
- B) The formation of HI_(g) is favored in system 4.
- C) The formation of H₂S is not favored in system 2.
- D) The formation of water is favored in system 3.
- 3. What is the mathematical expression for K_{eq} of the equilibrium system represented by the following equation? $Cu_{(s)} + 2 H_2 SO_{4(aq)} \leftrightarrow CuSO_{4(aq)} + SO_{2(aq)} + 2 H_2 O_{(l)}$

A)
$$K_c = \frac{[CuSO_4][SO_2][H_2O]^2}{[Cu][H_2SO_4]^2}$$
 B) $K_c = \frac{[CuSO_4][SO_2][H_2O]^2}{[H_2SO_4]^2}$

$$K_c = [Cuso_4][so_2]$$
[H₂so₄]²


4. What is the equilibrium constant for the following system if at equilibrium there are 3.0 mol/L of $N_2O_{4(g)}$?

$$2 \text{ NO}_{2(g)} \leftrightarrow \text{N}_2\text{O}_{4(g)} + \text{Energy}$$

$$\frac{4 - [N-0+7]}{[N0-2]^2} = \frac{4.0}{(3.0)^2} = 0.44$$

5. The reaction below is carried out with and without a catalyst in a sealed container. All other conditions are constant. Which graph correctly illustrates the [H₂] over time?

$$CO_{(g)} + H_2O_{(g)} \rightleftarrows CO_{2(g)} + H_{2(g)}$$

- 6. Apply Le Chatelier's Principle to the following equilibrium system. $E + N_{2(g)} + 2 O_{2(g)} \iff 2 NO_{2(g)}$ What effect will each of the following changes have on the concentration of ammonia, NO_{2(g)}? Circle correct answer
 - a) increasing the total pressure | Server INCREASE **DECREASE**

NO CHANGE

b) increasing the temperature forward

DECREASE

NO CHANGE

c) increasing the concentration of $N_{2(g)}$

INCREASE

DECREASE

NO CHANGE

7. A system reaches equilibrium according to the following equation:

$$4 \text{ Fe}_{(s)} + 3O_{2(g)} \rightleftarrows 2 \text{ Fe}_2O_{3(s)} + 1600 \text{ kJ}$$

What effect will each of the following changes have on the concentration of Fe₂O_{3(s)}?

a) A decrease in temperature 🧲

INCREASE

DECREASE

NO CHANGE

b) An decrease in pressure 🔭

INCREASE

DECREASE

NO CHANGE

c) An addition of a catalyst

INCREASE

DECREASE

NO CHANGE

Show your work and provide units for the following questions.

8. Use rate theory to mathematically show how the forward and reverse rates would change after doubling the pressure.

$$2B_{(5)} + 3H_{2(g)} \leftrightarrow B_2H_{6(g)}$$
 $\Delta H = +36 \text{ kJ}$

rate_E =
$$K[H_2]^3$$
 rate_E = $K[B_2H_6]$
= $K \cdot 2^3$ = $K \cdot 2$
= $2K$

9. A student adds 3.0 moles of N_{2(g)} and 6.0 moles of O_{2(g)} to a 5.0 L container. At equilibrium 1.0 mole of NO_{2(g)} is present. Calculate the equilibrium constant for this system

 $N_{2(a)} + 2 O_{2(a)} \leftrightarrow 2 NO_{2(a)}$

10. A student adds 5.00M water vapour and carbon monoxide. The reaction is permitted to reach equilibrium. Find the equilibrium concentration of all reactants and products if the Keq is 0.0625.

	H ₂ O _(g) -	CO _(g)	<→ H _{2(g)}	+ CO _{2(g}	Keg = [H2][CO2]
	5	5	0	0	[40][0]
C	-x	-×	O +x	+ X	$\frac{0.062 + x^2}{(5-x)^2}$
E	5-x	5-x	+x	+X	$\sqrt{0.0625} = \times$
					5-x

$$0.25(5-x) = x$$

$$1.25-0.25x = x$$

$$1.25 = 1.25x$$

$$x = 1$$

$$0.25 = x$$

$$-0.25(5-x) = x$$

$$-1.25+0.25x = x$$

$$-1.25=0.75$$

$$[H_2O_{(g)}] = 4.00 M$$

 $[CO_{(g)}] = 4.00 M$
 $[H_{2(g)}] = 1.00 M$
 $[CO_{2(g)}] = 1.00 M$

11. What are the final concentrations of all reactants and products if the initial concentration of H_2 is 10.0 M and I_2 is 6.0 M. Show all your calculations.

ar	nd I ₂ is 6.0 M. Sh H 2	now all your c	alculations.	Keq = 2
I	10	6	0	$(4z)(1z)$ $2 = (2x)^2$
C	-x	-x	+2x	$\frac{\sqrt{(10-x)(6-x)}}{(10-x)(6-x)}$
E	10-x	6-x	2×	$2(60-10x-6x+x^2)=4x^2$
χ=	-6±V		2	$\frac{120 - 32x + 2x^{2}}{0 = 2x^{2} + 32x - 120} = 4x^{2}$ $0 = 2x^{2} + 32x - 120$ $0 = 32$ $0 = -120$
= -32	+ 322-	4(2)(-1	20)	
	3(2)			[H ₂] = 6.86 H

$$= \frac{32 \pm \sqrt{1024 + 960}}{4} \times = 3.14$$

$$= -32 \pm \sqrt{1984}$$

$$= -32 \pm \sqrt{1984}$$

$$[H_2] = 6.86 \text{ M}$$

 $[I_2] = 2.86 \text{ M}$
 $[HI] = 6.28 \text{ M}$

- 1. Which of the following factors are necessary to establish dynamic chemical equilibrium?
 - 1. an open system
- 2. constant temperature
- 3. a reversible reaction \
- 4. changing macroscopic properties >

- A) 1 and 2
- B) 1 and 4
- C) 1 and 3
- D) 3 and 4
- 2. Which statement concerning the following equilibrium systems is FALSE?

1)	$N_{2(g)} +$	3 H _{2 (g)}	\leftrightarrow	2 NH _{3 (g)}	
2)	2 H _{2 (g)}	+ S _{2 (g)} ←	→ 2 ŀ	1 ₂ S _(g)	
				$H_2S_{(a)} + C$)-/

 $K_{eq} = 2.66 \times 10^{-3}$ $K_{eq} = 9.38 \times 10^{-5}$

3) $2 H_2 O_{(g)} + 2 S_{(s)} \leftrightarrow 2 H_2 S_{(g)} + O_{2(g)}$ 4) $H_{2(g)} + I_{2(g)} \leftrightarrow 2 H_{1(g)}$

 $K_{eq} = 5.31 \times 10^{-10}$

 $K_{eq} = 54.4$

- (A) The formation of NH_{3 (g)} is favored in system 1.
- \overline{B}) The formation of $Hl_{(g)}$ is favored in system 4.
- C) The formation of H₂S is not favored in system 2.
- D) The formation of water is favored in system 3.

MC			
	ns		
_ 1			
2	A		
_3	C		
4	0		
5	B		
/10			

\ TO

- 3. What is the mathematical expression for Keq of the equilibrium system represented by the following equation? $Qu_{(s)} + 2H_2SO_{4(aq)} \leftrightarrow CuSO_{4(aq)} + SO_{2(aq)} + 2H_2Q_{(l)}$
 - $K_{C} = [CuSO_{4}][SO_{2}][H_{2}O]^{2}$
- $K_C = [CuSO_4][SO_2][H_2O]^2$
- $K_C = [CuSO_4][SO_2]$
- $K_{C} = [SO_{2}]$
- 4. What is the equilibrium constant for the following system if at equilibrium there are 3.5 mol/L of $NO_{2(g)}$ and 4.0 mol/L of N2O4(g)?

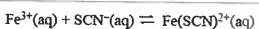
 $2 \text{ NO}_{2(g)} \longleftrightarrow \text{N}_{2}\text{O}_{4(g)} + \text{Energy}$

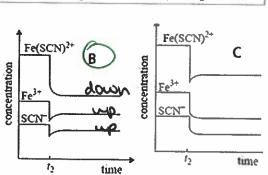
0.32

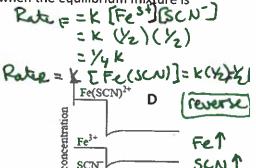
- A) 3.06
- B) 1.14
- C) 0.57

5. Which one of the following best represents the changes in concentration when the equilibrium mixture is

diluted at time t2?


Fe(SCN)24


 I_2


tune

concentration

SCN

 t_2

Fesch J

time

- 6. Apply Le Chatelier's Principle to the following equilibrium system. E + N₂ (g) + 2 O₂ (g) ← 2 NO₂ (g) What effect will each of the following changes have on the concentration of ammonia, NO₂(g)? Circle correct answer
 - a) decrease the total pressure R

INCREASE

DECREASE

NO CHANGE

b) decrease the temperature R

INCREASE

DECREASE

NO CHANGE

c) decrease the concentration of $N_{2(g)}$

INCREASE

DECREASE

NO CHANGE

3

7. A system reaches equilibrium according to the following equation:

$$4 \text{ Fe}_{(s)} + 3O_{2(g)} \rightleftharpoons 2 \text{ Fe}_2O_{3(s)} + 1600 \text{ kJ}$$

What effect will each of the following changes have on the concentration of Fe₂O_{3(s)}?

a) A increase in temperature R

INCREASE

DECREASE

NO CHANGE

7

b) An increase in pressure 🗲

INCREASE

DECREASE

NO CHANGE

c) An addition of a catalyst

INCREASE

DECREASE

NO CHANGE

Show your work and provide units for the following questions.

8. Use rate theory to mathematically show how the forward and reverse rates would change after doubling the pressure.

$$2B_{(s)} + 3H_{2(g)} \leftrightarrow B_{2}H_{6(g)}$$

$$rate_{E} = K [H_{2}]^{3}$$

$$= K \cdot 2^{3}$$

$$= 8 K$$

9. A student adds 3.0 moles of $N_{2(g)}$ and 6.0 moles of $O_{2(g)}$ to a 4.0 L container. At equilibrium 1.0 mole of $NO_{2(g)}$ is present. Calculate the equilibrium constant for this system.

$$N_{2(g)} + 2 O_{2(g)} \leftrightarrow 2 NO_{2(g)}$$

$$N_2$$
 $|20_2$ $|2N0_7$
 $|1 0.75|$ $|1.5|$ 0
 $|2 0.125|$ $|2 0.25|$
 $|2 0.625|$ $|2 0.25|$

$$keq = [N0_2]^2$$
 $[N_2][0_2]^2$
 $= (0.25)^2$

 $\frac{(0.25)^2}{(0.625)(1.25)^2} = 0.064$

10. A student adds 4.00M water vapour and carbon monoxide. The reaction is permitted to reach equilibrium. Find the equilibrium concentration of all reactants and products if the Keq is 0.0625.

	H ₂ O _(g)	+ CO _(g)	↔ H _{2(g)}	+ CO _{2(g)}	
1	4	4	0	0	
<u></u>	-×	-×	+X	* *	
E	4-x	4-x	×	×	

$$0.0625 = x^{2}$$

$$\sqrt{0.0625} = x$$

$$\frac{(4-x)^{2}}{4-x}$$

11. What are the final concentrations of all reactants and products if the initial concentration of H₂ is 9.0 M and l₂ is 6.0 M. Show all your calculations.

	H ₂	+ 12	→ 2 HI
I	9	6	0
C	-×	~x	2*
ਦ	9-x	6-x	2×

$$2 = \frac{(2x)^2}{(9-x)(6-x)}$$

$$2(9-x)(6-x)=4x^2$$

$$(9-x)(6-x)=2x^{2}$$

$$0 = x^2 + 15x - 54$$

$$= -15 \pm \sqrt{15^2 - 4(1)(-54)}$$

$$= 2(1)$$

$$= -15 \pm \sqrt{441}$$

$$x = 3$$

$$[13] = 3.0 \text{ M}$$

1. A certain chemical reaction establishes equilibrium. The equilibrium constant, Keq has a value of 2.5 x 1012. Which of the following statements best describes the equilibrium?

1 product

The reaction can never establish equilibrium.

At equilibrium, there is a greater concentration of reactants than produc.s.

At equilibrium, there is an equal concentration of reactants and products.

At equilibrium, there is a greater concentration of products than reactants.

1) $N_{2(g)} + 3 H_{2(g)}$	→ 2 NH _{3 (g)}
2) 2 $H_{2(g)} + S_{2(g)} \leftarrow$	> 2 H₂S (g)
212110 .20	

$$K_{eq} = 2.66 \times 10^{-3}$$

 $K_{eq} = 9.38 \times 10^{-5}$

3) 2
$$H_2O_{(g)}$$
 + 2 $S_{(s)} \leftrightarrow$ 2 $H_2S_{(g)}$ + $O_{2(g)}$

$$K_{eq} = 5.31 \times 10^{-10}$$

4)
$$H_{2(g)} + I_{2(g)} \longleftrightarrow 2 HI_{(g)}$$

$$K_{eq} = 54.4$$

- (A) he formation of NH_{3 (g)} is favored in system 1.
- B) The formation of $Hl_{(g)}$ is favored in system 4.
- C) The formation of H₂S is not favored in system 2.
- D) The formation of water is favored in system 3.

MC			
a	ns		
1	J.D		
2	A		
3	C		
4	D		
5	Ā		
	/10		

\ TO

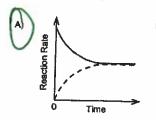
3. What is the mathematical expression for K_{eq} of the equilibrium system represented by the following equation? $Qu_{(s)} \rightarrow 2 H_2SO_{4(aq)} \leftrightarrow CuSO_{4(aq)} + SO_{2(aq)} + 2 H_2O_{(l)}$

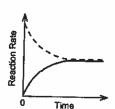
A)
$$K_C = [CuSO_4][SO_2][H_2O]^2$$

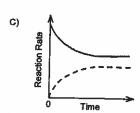
$$[Cu][H_2SO_4]^2$$

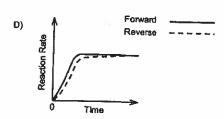
$$K_C = \frac{[CuSO_4][SO_2][H_2O]^2}{[H_2SO_4]^2}$$

4. What is the equilibrium constant for the following system if at equilibrium there are 3.0 mol/L of $NO_{2(g)}$ and 4.0 mol/L of N₂O_{4(a)}?


$$2 \text{ NO}_{2(g)} \leftrightarrow \text{N}_2\text{O}_{4(g)} + \text{Energy}$$


- A) 2.30
- 1.30
- C) 0.75




5. Steam, H₂O_(g), and carbon monoxide, CO_(g), are placed in a closed vessel at a high temperature and allowed to $H_2O_{(g)} + CO_{(g)} \longleftrightarrow H_{2(g)} + CO_{2(g)}$ reach equilibrium.

Which of the graphs below best represents the forward and reverse reaction rates from the start of the reaction until it reaches equilibrium?

- 6. Apply Le Chatelier's Principle to the following equilibrium system. $E + N_{2(g)} + 2 O_{2(g)} \iff 2 NO_{2(g)}$ What effect will each of the following changes have on the concentration of ammonia, $NO_{2(g)}$? Circle correct answer
 - a) increasing the total pressure F

INCREASE

DECREASE

NO CHANGE

b) addition of a catalyst

INCREASE

DECREASE

·NO CHANGE

c) decreasing the concentration of $N_{2(g)}$

INCREASE

· DECREASE

NO CHANGE

7. A system reaches equilibrium according to the following equation:

$$4 \text{ Fe}_{(s)} + 3O_{2(g)} \rightleftharpoons 2 \text{ Fe}_2O_{3(s)} + 1600 \text{ kJ}$$

What effect will each of the following changes have on the concentration of Fe₂O_{3(s)}?

a) A decrease in temperature F

- INCREASE

DECREASE

NO CHANGE

b) An decrease in pressure ?

INCREASE

DECREASE

NO CHANGE

c) increasing the concentration of O₂ INCREASE

DECREASE

NO CHANGE

Show your work and provide units for the following questions.

8. Use rate theory to mathematically show how the forward and reverse rates would change after doubling the pressure.

$$2B_{(s)} + 3H_{2(g)} \leftrightarrow B_{2}H_{6(g)}$$

$$rate_{=} = K[H_{2}]^{3}$$

$$= K \cdot Q^{3}$$

$$= 8K$$

9. A student adds 3.0 moles of $N_{2(g)}$ and 6.0 moles of $O_{2(g)}$ to a 6.0 L container. At equilibrium 1.0 mole of $NO_{2(g)}$ is present. Calculate the equilibrium constant for this system.

$$N_{2(g)} + 2 O_{2(g)} \leftrightarrow 2 NO_{2(g)}$$

$$\frac{(e_4 = \frac{[NO_2]^2}{[N_2][O_2]^2}}{[N_2][O_2]^2} = \frac{(0.16)^2}{(0.416)(0.83)^2}$$

Keg=0.096

10. A student adds 4.00M water vapour and carbon monoxide. The reaction is permitted to reach equilibrium. Find the equilibrium concentration of all reactants and products if the Keg is 0.0625.

	H ₂ O _(g) +	$CO_{(g)} \longleftrightarrow$	H _{2(g)} +	CO _{2(g)}
1	4	4	0	0
C	- χ	-2	+×	+x
E	4-x	4-x	χ	×
			2	

$$0.0625 = \frac{x^2}{(4-x)^2}$$

$$0.25(4-x)=x$$

$$1 - 0.25 x = x$$

$$4 - x = 3.2$$

$$-0.25(4-x) = x$$

 $-1 + 0.25x = x$
 $-1 = 0.75x$

$$[H_2O_{(g)}] = 3.20 \text{ H}$$

$$[H_{2(g)}] = 0.800H$$

$$[CO_{2(g)}] = 0.800M$$

11. What are the final concentrations of all reactants and products if the initial concentration of H2 is 10.0 M Keq_[HI]2 and I2 is 7.0 M. Show all your calculations.

	H ₂	+ 12	→ 2 HI
1	10	7	0
C	-x	-x	+2×
E	10-x	7-x	2 x

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= -17 \pm \sqrt{17^2 - 4(1)(-70)}$$

$$= -17 \pm \sqrt{17^2 - 4(1)(-70)}$$

$$x = 3.43$$
 or $x = 20.4$

$$2 = (2x)^{2}$$

$$(10-x)(7-x)$$

$$2(10-x)(7-x)=4x^2$$

$$0 = x^2 + 17x - 70$$

$$[1_2] = 3.57M$$

$$[HI] = 6.86 M$$