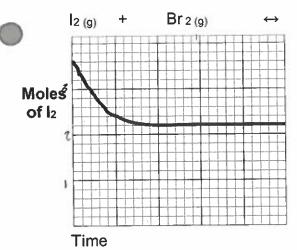
1. In the equilibrium system shown all substances are aqueous: $Ag^+ + 2 NH_3 \leftrightarrow Ag(NH_3)_2^+$ When the two solutions first came into contact, the following concentrations were present:

$$[Ag^{+}] = 0.60 M$$

$$[NH_3] = 0.40 M$$

After a time an equilibrium is established and it was found that : [Ag(NH₃)₂+] EQ = 0.19 M


Find the Keq. $Ag^{+} \quad 2NH_{3} \quad Ag(NH_{3})_{2}$ $1 \quad 0.60 \quad 0.40 \quad 0$ $6 \quad -0.19 \quad -0.38 \quad +0.19$ $6 \quad 0.41 \quad 0.02 \quad 0.19$

$$Ke_{2} = \frac{\left[A_{9}(NH_{3})_{2}^{+}\right]}{\left[A_{9}^{+}\right]\left[NH_{3}\right]^{2}}$$

$$= \frac{0.19}{(0.41)(0.02)^{2}}$$

$$Ke_{2} = 1158.5 \qquad \boxed{11\times10^{3}}$$

The reaction below begun by mixing 3.6 moles of I₂ gas with 5.4 moles of Br₂ gas in a 1.0 litre
container. The graph below shows the change in number of moles of I₂ over time as the
reaction proceeded.

2 IBr (g) Find the value of the Keq for this reaction.

3. Reactants A and B are mixed and their initial concentrations are [A] = 0.60M and [B] = 0.40 M. At equilibrium it is found that half of the reactant A was consumed. Calculated the Keq for this system.

They react as follows: A + B \leftrightarrow 2C + D

A B 2C D

1 0.60 0.40 0 0

C-0.30 -0.30 +0.60 +0.36

Quadratic equation questions

4. At high temperatures COBr₂ (g) decomposes into CO(g) and Br₂(g). In the lab you heat a 0.250M COBr2 (g) sample until it decomposes. Find the equilibrium concentration for each reactant and

$$= -0.190 \pm \sqrt{(0.190)^2 - 4(1)(-0.0475)}$$

$$= -0.190 \pm \sqrt{0.2261}$$

$$= 0.1074$$

$$= 0.1074$$

$$= 0.190 \pm \sqrt{0.2261}$$

$$= 0.1074$$

$$= 0.1074$$

$$= 0.1434$$

$$= 0.1434$$

5. Consider the reaction of H2 reacting with I2 to produce HI. Calculate the equilibrium concentrations of all 3 species if the initial concentration are; $| \langle eq = 54.3 \rangle |_{H_2J} = 0.00467$

[H₂] = 0.00623M
[I₂] = 0.00414M
[H₁] = 0.0224M

$$(-x)$$
 $(-x)$ $(-x)$

$$Ke_2 = \frac{[HI]}{[I_2][H_2]}$$

$$54.3 = (0.0224 + 2x)^2$$

$$(0.00623 - x)(0.00414 - x)$$

$$54.3 = 5.03 \times 10^{-4} + 0.0896x + 4x^2$$

$$54.3 = 5.02 \times 10^{-4} + 0.0896 \times 4 \times^{2}$$

 $2.58 \times 10^{-5} - 0.0104 \times + \times^{2}$

$$50.3x^{2}-0.654x + 8.98x10 = 0$$

$$7 = -5 \pm \sqrt{5^{2}} \cdot 4ac$$

$$= 0.654 \pm \sqrt{(-0.654)^{2} - 4(50.3)()}$$

$$2(50.3)$$

$$x = 0.0114 Mar (x = 0.00156 M) = 8.98x10^{-4}$$

1.40×10-3-0.56472x+54.3x2 = 5.02×10-4+0.0896v +4x2