Rates In-class practice

- 1. From the data in the following graph, calculate (a) the average rate of reaction for the first 5s.
 - (b) the average rate of reaction between 5s & 10s.

2. Write the predicted rate law for each reaction below.

What would happen if the 1st reactant concentration were to double?

c.
$$H_2SO_{4(aq)}+2KOH_{(aq)} \rightarrow K_2SO_{4(aq)}+H_2O_{(1)}$$
 take a k [H2SO4] [KOH]? × 2

3. The following graph illustrates the rate at which O₂ is used up in the gaseous reaction 4HBr+O₂→2Br₂+2H₂O
mol

a. Draw the curve illustrating the rate of appearance of Br2.

rote= [mol = = 0,1mol/s

- b. Calculate the average rate of disappearance of O₂ over the first 10 seconds __
- c. Calculate the average rate of production of Br_2 during the same time $\frac{0.1 \times 2 = 0.2 \text{ mol}}{2}$
- d. Calculate the average rate of disappearance of HBr during this time -0.1 4 0.4 wol/3
- e. Calculate the rate of appearance of H_2O during this time $0.1 \times 2.2 \times 0.2 \times 1/2$

4. Find the rate expression using the data below. You must show calculations to justify your answer.

[A] mol/L	[B] moi/L	Rate (mole/L+s)
1.50	1.50	3.20 x 10 ⁻¹
1.50	4.50	2.88
3.00	1.50	6.40×10^{-1}

5. Given the reaction $3H_2 + N_2 \rightarrow 2 NH_3$.

The graph below shows the amount of nitrogen (in mols) present over a period of time.

On the same graph, draw a curve showing the amount of ammonia (NH₃) present (in mols) during the same time period. You must show at least 4 data points.

You may assume that there was no ammonia present in the container before the reaction began.

